SAALFELD, H. (1960). Neues. Jahrb. Mineral. Abh. 95, 1-87.

SKOGSMO, J. (1989). PhD Thesis, Chalmers Univ. of Technology,

- Sweden. SKOGSMO, J., HENJERED, A. & NORDÉN, H. (1984). J. Phys. (Paris) Collog. 9(45), 447-451.
- SKOGSMO, J., LIU, P., CHATFIELD, C. & NORDÉN, H. (1989). Proceedings of the Twelfth International Plansee Seminar 1989, Vol. 3, edited by H. BILDSTEIN & H. M. ORTNER, pp. 129–142. Reutte, Tirol, Austria: Metallwerk Plansee GMBH.
- SKOGSMO, J. & NORDÉN, H. (1985). Proceedings of the Fifth European Conference on CVD, edited by J.-O. CARLSSON & J. LINDSTRÖM, pp. 364–370. Uppsala Univ., Sweden.
- STEEDS, J. W. (1979). Introduction to Analytical Electron Microscopy, edited by J. J. HREN, J. I. GOLDSTEIN & D. C. JOY, ch. 15, pp. 387-422. New York: Plenum Press.
- STEEDS, J. W. & VINCENT, R. (1983). J. Appl. Cryst. 16, 317-324.

- TANAKA, M. & SEKII, H. (1982). Electron Microscopy 1982, Proceedings of the Tenth International Congress on Electron Microscopy, Vol. 1, pp. 631–632. Hamburg: Offizin Paul Hartung.
- TANAKA, M. & TERAUCHI, M. (1985). Convergent-Beam Electron Diffraction, pp. 160-173. Tokyo: Jeol Ltd.
- TANAKA, M., TERAUCHI, M. & KANEYAMA, T. (1988). Convergent-Beam Electron Diffraction, Vol. 2, pp. 214–225. Tokyo: Jeol Ltd.
- VAINSHTEIN, B. K., FRIDKIN, V. M. & INDENBOM, V. L. (1982). Editors. *Modern Crystallography*, Vol. 2, *Structure of Crystals*, pp. 70-114, Berlin: Springer Verlag.
- VUORINEN, S. & SKOGSMO, J. (1988). Proceedings of the First International Conference on Surface Modification Techniques, pp. 143-168. Phoenix, Arizona.
- WILLIAMS, D. B. (1987). Practical Analytical Electron Microscopy in Materials Science, revised ed., pp. 1, 127–133. Princeton, New Jersey: Electron Optics Publishing Group.

Acta Cryst. (1991). B47, 433-439

Inorganic Structure Types with Revised Space Groups. I*

By Karin Cenzual, Louise M. Gelato, Marinella Penzo and Erwin Parthé

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland

(Received 5 September 1990; accepted 15 January 1991)

Abstract

Standardized data sets in space groups which consider all symmetry elements in the structure are given for the following structure types, originally reported in space groups with lower symmetry or with larger unit cells (numbers of original and new space group are indicated within parentheses): Ag₃TlTe₂ (53 \rightarrow 65), Au₃Cd (107 \rightarrow 139), Ca₃Hg $(217 \rightarrow 221, \frac{1}{4} \text{ volume of primitive cell}), CeZn_3$ $(62 \rightarrow 63)$, CoGe₂ (41 $\rightarrow 64$), CuAu phase I (123 $\rightarrow 123$, $\frac{1}{2}$ cell volume), Cu₁₀Sb₃ (147 \rightarrow 176), GaSe 2H ε $(174 \rightarrow 187)$, InSe II $(10 \rightarrow 12)$, LaB₂C₂ $(112 \rightarrow 131)$, α -Li₃BN₂ (94 \rightarrow 136), Li_{6.45}Mn₃As₄ (16 \rightarrow 49 or 67), Li_7Pb_2 (150 \rightarrow 164), $LiPd_2$ (10 \rightarrow 10, $\frac{1}{2}$ cell volume), LiRh (174 \rightarrow 187), MgAu_{3-x} (38 \rightarrow 63), Mg₃In (146 \rightarrow 166), Mn₂AlB₂ (21 \rightarrow 65), Mn₃As (59 \rightarrow 63), MnBi QHT (17 \rightarrow 51), Mn(Bi_{0.85}Sb_{0.15}) (17 \rightarrow 51), Na₂HgO₂ (97 \rightarrow 139), Na_{1-x}TiS₂ (146 \rightarrow 160), NbD_{0.95} (48 \rightarrow 66), θ -Ni₂Si (176 or 182 \rightarrow 194), Pd_{4-x}Te (216 \rightarrow 227), PtSn₄ (41 \rightarrow 68), SrFe₂S₄ (117 \rightarrow 125), $Tb_2(Fe_{0.832}Al_{0.168})_{17}$ (177 \rightarrow 191), $Ti_3Al_2N_2$ (159 \rightarrow 186), V_6C_5 (144 \rightarrow 151), VCo₃ LT VAu₂ (38→63), (187 \rightarrow 194), γ -V₄D₃ (27 \rightarrow 49), WAl₅ (173 \rightarrow 182), δ -Yb₂S₃ (4 \rightarrow 11), Zr₄Al₃ (174 \rightarrow 191). For all these structures, data conversion is possible without modifying the numerical values of the positional parameters. Reported triclinic NaSbS₂ is shown to be identical with NaSbS₂ previously refined in space group C2/c and crystallizing with a KSbS₂-type structure.

Introduction

One of the problems in comparative crystal chemical studies arises from the number of possible data sets describing the same crystal structure. To make it easier to recognize identical atom arrangements a standardization procedure was developed (Parthé & Gelato, 1984, 1985; Gelato & Parthé, 1987), which selects one single data set within the reported space group. However, for some structures found in the literature, the space group chosen by the authors is incorrect as far as it does not consider all symmetry elements contained in the structure. Since symmetry properties such as polar axes and noncentrosymmetricity are requisites for special physical properties, reporting centrosymmetric structures in noncentrosymmetric space groups for instance, leads the physicist who is looking for materials likely to exhibit particular properties, into error.

In the course of the preparation of a book on inorganic structure types (Parthé, Gelato, Chabot, Penzo & Cenzual, 1991), standardized data sets for some 2000 structure types reported for inorganic compounds (oxides and halides not included) have

© 1991 International Union of Crystallography

^{*} Part II, a complementary list of inorganic structure types with revised space groups, will be submitted to this journal as a Short Communication.

up to now been tested for the presence of additional symmetry elements with the program MISSYM (Le Page, 1988). It was found that nearly 2% of the tested structure types can be described in a space group with higher symmetry than that reported, without modification of the published numerical values of the positional parameters. In a previous paper (Cenzual, Gelato, Penzo & Parthé, 1990), the particular case of trigonal structures with hR Bravais lattices, originally reported with monoclinic side-face-centred cells, was discussed.

Discussion

Table 1 contains a list of structure types for which the originally reported space group does not consider all symmetry elements actually present in the proposed structure. In the vast majority of cases the authors made no comments on the possibility of describing the structure in another space group, and only for CeZn₃, Au₃Cd, CuAu phase I and θ -Ni₂Si was the correct space group, or unit cell, mentioned as 'alternative' in the publication, in Strukturbericht (SB; 1913-1939) or in Structure Reports (SR; 1940-1988). For structure types like Mn₂AlB₂, Na₂HgO₂, $Na_{1-x}TiS_2$ or VCo₃ LT, structures recognized as being isotypic were refined in the correct space group. However, since such statements have generally not been considered in more recent references or data files, it also seemed worthwhile including these structure types here. In a few cases the authors of the refinement explicitly exclude a space group which perfectly applies to the structure they propose $(CoGe_2, \delta - Yb_2S_3)$

For each structure type listed in Table 1 the original description is characterized by its Pearson code, space group and a literature reference.* The transformations indicated in the central part of the table convert the published data into the standardized description based on the correct space group [for criteria for a standardized data set see Parthé & Gelato (1984, 1985)]. With regard to the conversion of data for compounds reported with one of these structure types, different situations occur. In some structure types all atoms occupy special positions with high point symmetry which exist in several space groups [site 3(a) 00z in space group R3, for instance, is also present in R3m]. A transformation of the data into the space group with higher symmetry can be applied, without restriction, to any

compound reported as isotypic. Examples of such structure types are LaB_2C_2 and Na_2HgO_2 for which several isotypic compounds are known. For other structures special values $(\frac{1}{4}, \frac{1}{6} etc.)$ were reported for parameters which in the low-symmetry space group are refinable, for yet others the data conversion requires mathematical relationships between refinable atom coordinates of the same or different atom sites in the original space group. For $CoGe_2 z(Co1)$ $+ z(Co2) = -\frac{1}{4}$, whereas for isotypic PdSn₂ the corresponding sum is equal to -0.248, which however must be considered to be within the limits of experimental error. For NbD_{0.95} (or δ -VD_{1-x}) a description in Cccm is possible only if the vacancies are equally distributed on both deuterium sites reported in *Pnnn*. For these last categories, compounds reported as isotypic must be examined one by one.

Pearson codes, space groups and Wyckoff sequences corresponding to the corrected standardized description are listed on the right-hand side of Table 1, whereas complete data sets (cell parameters, positional atom coordinates and population parameters when different from 1) can be found in Tables 2-39. Digits or letters in the last column of these tables, denoted as 'old', refer to the site notation (or order in atom coordinate list) in the original description. It is evident that the 'corrected' data sets given here are only valid as far as the reported atom arrangements themselves are correct. Only idealized coordinates were proposed for several structures and intensities calculated from the model were visually compared with X-ray films. Accurate refinements may confirm the space group with lower symmetry. It can however be noted that for all structures where diffraction data are listed in the publication, except for Ca₃Hg discussed below, conditions for additional extinctions in the space group of higher symmetry are respected. Misprints were detected in the data published for Li₇Pb₂ (see SR 20 137) and Cu₁₀Sb₃ (correction based on interatomic distances and confirmed by comparison with data for Au₁₀In₃). Site occupations in Li_{6.45}Mn₃As₄ are not clearly indicated in the original publication and two data sets are also proposed here. Depending on whether the arrangement of Mn atoms occupying the tetrahedral interstices in the layers at z = 0 in the original description is partially ordered or completely disordered, different space groups are found. The interatomic distances calculated from some of the data sets are relatively short [Mn(Bi_{0.85}Sb_{0.15}), GaSe 2H ε]; however, the most suspect structure in Table 1 is that proposed for Ca₃Hg. Drawing and atom coordinates correspond to the well known Cu₃Au type, but the intensities of the powder diagram calculated from these coordinates do not agree with the published diagram, where reflections which should be absent are reported with strong intensities.

^{*} A list containing complete references for papers referred to by five-character codes from *Chemical Abstracts Service Source Index* (1989) has been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53892 (4 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

S
11
ie i
2
le
Ø
3
2
ne
n
2
S
~
al
2
\mathbf{t}
.2
ŝ
0
S
11
ũ
~
q
~
a
4
5
à
Z.
5
00
e
30
ă
5
'n.
~
6
1
õ
<u>a</u>
2
2
1
ĩa
i
.00
5
es
- d
も
e
1
11
SC 2
r.
S
- 1
e
G
a

For each structure type the following data are given. Published data: Pearson code; space-group number in *International Tables for X-ray Crystallography*; Hermann–Mauguin symbol of setting used in the original description; literature reference. Transformation: new unit-cell vectors expressed as a combination of the published ones; coordinates of translation to be applied, referred to the new axes (to subtract); existence of special conditions to be respected for compounds reported as isotypic. Corrected data: Pearson code; space-group number and Hermann–Mauguin symbol; Wyckoff sequence of standardized data set; reference to the table containing the positional coordinates. Related structure: isotypic and other closely related structures reported in the correct space group in the correct space group.

		Pul	blished day	ta	Tra	insforma	tion			Ū	Corrected data			
	Pearson				New unit-			(Pear	son .	Space group -	4 Tr. blo	Related	Deference
Structure type	code"	Space g	roup	Reference	cell vectors		Shift	<u>ි</u> .	nd code	A (37)	vyckou sequence	, lable	SILUCIULE	VCICICITIC
Ag,TITe2	oP12	(23)	Pmna	SPHCA 17 237	a, c,b	c	-	~	2100	(c)) (C)	$\int Cmmm - jucu$	4 6	ZrAl.	ZACMA 242 I
Au ₃ Cd	1/16	(60)	[4mm [72	JUPSA 20 89	6/2 6/4 (Ja	- ~	> (cP4	53	1) $Pm\overline{3}m - ca$	4	CuiAu	SR 11 103
Cajng CeZn.	0P16	(69)	Pumo	ICOMA 22 253	bc.a	4 r 4	4 **** *		• 0516	(63)	Cmcm - fc ²	ŝ	PuBr ₃	ACCRA 1 265
	0.724-1	(17)	Bha2	ZEMTA 41 433	c.a.b	0-875	0	0	• oS24	-1 (64)) Cmca – fed	9		
CuAu phase I	1.P4	(123)	P4/mmm	SB 1 484	a/2 + b/2, - a/2 + b/2,c			•		(12	3) P4/mmm – da	7	MnHg LT	JUPSA 17 1313
CueSb	hP26	(147)	P3	ZEMTA 49 124		0	0		 hP26 	(17	6) $P6_{3}/m - h^{2}c$	~	٨u _{io} In	ZEMTA 73 463
GaSe 2H E	8 <i>4</i> 4	(174)	2d	ZEMTA 46 216		~~		-74-	<i>hP</i> 8	(18	7) P6m2 - ihg ²	6 ;		
InSe II	mP8	(10)	P2/m11	JSSCB 43 140	b – c,a, – b	0	-37		mS8	(12)	$C2/m - i^{2}$	2:		
LaB ₂ C ₂	<i>tP</i> 10	(112)	P42c	ACBCA 36 1540		0-	0-		0141	E) ($1) P4_{2}/mmc - mk$	= :		
a-Li ₃ BN ₂	<i>rP</i> 12	(64)	P421,2	JSSCB 71 1			-77		<i>iP</i> 12	EU	$\begin{array}{ccc} b & P4_2/mmm - Jdb \\ p & 21 - 5 \\ p$	7:		
Li ₆₄₅ Mn ₃ As4	oP16-2·55	(16)	P222	ZAACA 356 253	b,c,a	0-	0 0			(4) CC-7 -	rccm - q ngre	<u>.</u>		
						•••	0		0100	(0) cc.7 -	$\int Cmma - g var$	5 2		
Li,Pb2	644	(150)	P321	JPCHA 60 234	-a, -b,c			-			$\frac{4}{D} \frac{1}{D} \frac{1}$	<u>t x</u>		
LiPd2	<i>mP</i> 8		P12/m1	JCUMA 03 P83	81/2 T C/2, - 0,81/2 - C/2				G44		$P_{m} = dn$	19	WC	MOCMB 93 263
Likh	274	(1/4)	<u>د</u>	ALLKA 18 900		c	0.875	~	• S16	9	$Cmcm - h^4 \sigma^2 h^3$	LI 42	1	
MgAu ₃₋ ,	05160	(96)	C <i>mLm</i>	ZEMIA 30 804 7EMTA 54 477	- h a + h c		0	4-0	• hR48	90	6) $R3m - h^2c^2$	18	PuGa, HT	ACCRA 18 294
IIIGIM	0401	reverse (27			•		•						
Mn.AlB.	oS10	(21)	C222	ZAACA 344 140					oS10	(65) Crumm – jia	61	Fe ₂ AIB ₂	ACBCA 25 163
Tara Juni											•	:		INOMA 5 321
Mn,As	oP16	(2)	Pmmn	MOCMB 82 513	-a,c,b			0.	• oSI6	(9) (9)	$Cmcm - c^{2}$	22		
MnBi quenched	oP10-1·78	(1)	P222,	ACSAA 26 175	c,a,b	-~			• oPl0	IC) 8/-1 -	$Pmma - je^{a}$	7 F		
Mn(Bio.85Sb0.15)	oP10-1-96	(1)	P222,	PSSAB 34 553	c,a,b	-~	-7			IC) 96-1 -	$)$ $Pmma - Je^{da}$	35	UT 11	ACDCA 37 1067
Na,HgO,	<i>r/</i> 10	(67)	1422	ZAACA 329 110					110	<u>(</u>])	9) 1 4/mmm – e ² a	6 7	U2IIC2 Na. PdH.	ICOMA 139 233
4	ŝ	į	Ļ	101 00 1000		c	1	c	41.5 m	317	010 - 62	24	KShS,	ZAACA 414 211
a-NaSbS2	aP8	(2)	1	JSICA 20 122	-a-0,-a+0,-c	•	7	>	C144	-1.35 (16	$0 R^{2}m = n^{4}$		Na. VS.	MRBUA 9 1261
Na _{1-x} TiS ₂	hR12 - 1.35	(146)	K3	BSCFA 19/1 3930	0,a, - c c F - c	-	_,	-	- 800	0.20 (66	Ccm - ea	3 8	7- · K - Im ·	
NbDogs	01-8-0-20	(42)	mmr m	0/01 01 MCC10	c.u, - a h - a - h/3 + c/2	, c	• =	o∗	* mPld		$P2./m - f^2e^4$	(8)		
b-NoP(3	010 	Ē	11/17/17	ACCEA 17 615		o −2) r	- 0	* mP6	00) P2/m - nmea	(8)	LiSn	ZNBAD 28 246
PubjKIIs	mr 10 h.P6	(187)	P6.27	ACCRA 5 329		7	7		hP6	(1)	4) P63/mmc - dca	27	Ni₂In	IASKA 1944 29
102111-0	0.00	(1761)	P6./m											
PdSn.	a:S24 - 1	(41)	Bha2	ZEMTA 41 433	See CoGe,						1		:	
Pd Te	cF120-12	(516)	F43m	SPHCA 14 779	b, – a, c	- 30		~ 80 /	• <i>cF</i> 12(- 12 (22	7) Fd3m - fedca	38	CoMnSb	JSSCB 5 226
PtSn.	o.S20	(41)	Aba2	ZEMTA 41 298	b,c,a	•	~~~		• • 520	89 (68) Ccca – ia	2		
SrFe ₂ S ₄	<i>tP</i> 16-2	(117)	P4b2	MOCMB 109 975				ə -	01 <i>-</i> 11	71) 7-	m = man + d (C	20 20 15 212		
Tb ₂ (Fe _{0.832} Al _{0.168}) ₁₇	hP22 – 3	(171)	P622	JCOMA 45 103		0	• •	***	7744	61) 61	$\frac{1}{1} rommu - m_{1}$	15 D J I		
Ti ₃ Al ₂ N ₂	hP22-8	(159)	P31c	JSSCB 53 260		-	-	C8-0	77.10	- 0 (10	$\frac{1}{2} \int \frac{1}{2} $	7 4		
UPt,	oSI2	(1	Ama2	ACCKA 12 635	- C, D, B		, c.c	~-	1100 *	99	Denem - or	÷.	TaPt,	ACCRA 17 615
VAu ₂	0512	(85)	Amm 2	ZEMIA 33 433	n'c'a	• •	070	4 ,	+ hP33	51)	(1) $P3.12 - c^3 b^2 a^3$	8		
۲، ۱۳	1733 1733	(1)	PZm1			• -	. 0	n en en	* hP24	6	4) P6 ₃ /mmc - kh	b 35	PuA1, HT	ACCRA 10 443
* UD	- 42 JU	(101)	Dunu Dunu	DECAR 15 267	See NhD.	,								
** V_1-,	0F6 - 4X		Pres	PSSAB 15 267		0	0		• oP14	-0-24 (49	$Pccm - q^2 le$	36		
WAL.	(Id4	(<u>1</u>	Ϋ́Ε	ACCRA 8 349		0	0	~~*	* hP12	(18	(2) P6 ₃ 22 - gdcb	37		
YB.C.	<i>r</i> P10	(211)	P42c	MOCMB 102 1129	See LaB ₂ C ₂						:			
6-Yh-S.	<i>mP</i> 30	6	P12,1	RUICA 21 1565	c, — b,a	0	-174	-~	* mP3(E	$P2_{1}/m - e^{13}$	38	δ-Ho ₂ S3	INOCA 6 1872
7r.Al.	hPT	(174)	24	ACCRA 13 56	•		~~	0	* hPT	61)	1) P6/mmm – fea	66		
ZrAhC.	hP20 - 2x	(159)	P31c	ZEMTA 71 341		0	0	4	* hP20	– 2 _X (19	$(4) P6_3/mmc - f^3e$	ca (i)		
			and of the	acced as follower (er	im of multiplicities of all	nartial	lv or fullv	occuni	ed Wyckoff site	s) – (sum	of vacancies on	these sites): h	exagonal cell	s are considered
Notes: (a) I ne numo		nic unit	רכוו וא באף	or as rollows. (s	min of muchanical of a	oterc of	iournal of	-des fro	m Chemical Al	stracts Sei	rvice Source Inde	c (1989). SR	or SB. volum	e number, page
tor trigonal structure	s. (b) Literatui	re retere	inces are in		willg way. Inst into cliata				como with highe	r svmmetr	ldison vluo si v	if special co	nditions on r	umerical values
number. (c) An aster.	isk in this colu	mn mea	ins that co	Inversion of data for	compounds reported as	isouppie,	uno uno s		is indicated as	include a	y, is only possion int (see Gelato A	Parthé 198	7)· it should	he noted that a
of refined parameter	are respected	ə1 (p) .	tters of oc	cupied wyckoll suc	S; the number of bounds		cault suv		Is indicated as	windhe p	ipt (ave avenue - n & Parthé (1981	V () Denend	ing on which	cite occupation
comparison of Wyck	off sequences i	s only n	neaningful	when reterring to si	tandardized data sets. (e)	NON-SLA	noaruized	l uala s		vy i finni vy coo do	11 OK Ianun Vivo 11 OK Ianun Vivo	· · · · · · · · · · · · · · · · · · ·	1115 VII 711171	and average of the second
is accepted, different	space groups	are four	nd. (g) See	t data set in Zhao, C	jelato & Parthé (1991). (h) See a:	ata set in	Zhao o	(UKKI) PALINE	(i) see ua	ITA SCI IN FAILUE	ע כוומטטו עו	.00)	

K. CENZUAL, L. M. GELATO, M. PENZO AND E. PARTHE

435

In

C B La

> Ν Li(1) Li(2)

Table 2. Corrected structure data for Ag₃TlTe₂ Table 9. Corrected structure data for GaSe 2H ε (original data from SPHCA 17 237)

(original data from ZEMTA 46 216)

	(65) C	mmm, a =	= 4.60, b = 1	5·45, c =	= 4·76 Å.			
		x	у	Ζ	PP	Old		
Te	4(j)	0	0.127	ł			Se(1)	2(i
Ag(1)	4(i)	0	0.315	0		1	Ga(1)	20
Ag(2)	2(c)	12	0	ł		2	Ga(2)	2(3
TI	2(a)	0	0	0			Se(2)	20

Table 3. Corrected structure data for Au₃Cd (original data from JUPSA 20 89)

(13	9) <i>14/mm</i> r	n, a = 4	109, c = 16	5·552 Å, X =	Cd _{0.96} Au	u _{0.04} .
		x	у	Z	PP	Old
Au(1)	4(e)	0	0	0.1241		3.3
X	4(e)	0	0	0.3733		1.2
Au(2)	4(d)	0	1	1		2
Au(3)	4(c)	0	ł	0		1

Table 4. Corrected structure data for Ca₃Hg (original data from CCACA 51 75)

(221) <i>Pm</i> 3 <i>m</i>	a = 4.92	Å, structi	ure does n tion diagra	ot corresp am.	ond to pub	lished diffi	ac-
		x	у	z	РР	Old	
Ca	3(c)	0	ļ	ļ		1,2	
Hg	1(a)	0	0	Ō			

Table 5. Corrected structure data for CeZn₃ (original data from JCOMA 22 253)

(63) Cmcm, a = 4.627, b = 10.437, c = 6.644 Å.

		x	у	z	PP	Old
Zn(1)	8(/)	0	0.120	0.055		2,3
Ce	4(c)	0	0.400	1		
Zn(2)	4(c)	0	0.690	4		1

Table 6. Corrected structure data for CoGe₂ (original data from ZEMTA 41 433)

(64) Cmca, a = 10.818, b = 5.681, c = 5.681 Å, cell parameters converted from kX units (see SR 11 96).

		x	у	z	PP	Old
Ge(1)	8(/)	0	0.158	0.342		1
Ge(2)	8(e)	4	0.22	ź		2
Co	8(<i>d</i>)	0.113	0	0	0.875	1,2

Table 7. Corrected structure data for CuAu phase I (original data from SB 1 484)

(123)
$$P4/mmm$$
, $a = 2.81$, $c = 3.72$ Å.

		x	у	z	PP	Old
Au	1(<i>d</i>)	ł	1	ł		
Cu	l(a)	0	0	0		1,2

Table 8. Corrected structure data for Cu₁₀Sb₃ (original data from ZEMTA 49 124)

	(17	76) P6 ₃ /m,	a = 9.920,	c = 4.31	9 Å.	
		x	v	z	РР	Old
Cu(1)	6(h)	0.029	0.444	ł		2
Cu(2)	6(h)	0.169	0.056	Ĩ		ī
Sb	6(h)	0.259	0.363	i i		
Cu(3)	6(h)	0.505	0.294	i.		3
Cu(4)	2(c)	1	2	ł		4*

* z coordinate is misprinted as $\frac{1}{4}$ instead of $\frac{3}{4}$ in paper.

	(18	7) P 6m2,	a = 3.743	, <i>c</i> = 15.919	Å.	
		x	r	Z	РР	Old
Se(1)	2(<i>i</i>)	23	Ì	0.150		2
ia(1)	2(<i>h</i>)	Ì	ŝ	0.425		1
ia(2)	2(g)	0	0	0.075		2
Se(2)	2(g)	0	0	0.320		1

Table 10. Corrected structure data for InSe II (original data from JSSCB 43 140)

(12) C2/m, a = 11.74, b = 4.11, c = 4.61 Å, $\beta = 110.3^{\circ}$.

		x	у	z	PP	Old
Se	4(<i>i</i>)	0.160	0	0.142		1,2
In	4(<i>i</i>)	0.384	0	0.505		1,2

Table 11. Corrected structure data for LaB_2C_2 (original data from ACBCA 36 1540)

(131)	$P4_2/mmc$,	a = 3.82	c = 7.9	9237 Å.	
	x	y	z	PP	Old
4(<i>m</i>)	0.173	ļ	0		
4(k)	0.226	Į	ļ		
2(<i>e</i>)	0	0	1		
	(131) 4(m) 4(k) 2(e)	(131) $P4_2/mmc$, x 4(m) 0.173 4(k) 0.226 2(e) 0	$(131) P4_2/mmc, a = 3.82$ $x y'$ $4(m) 0.173 \frac{1}{2}$ $4(k) 0.226 \frac{1}{2}$ $2(e) 0 0$	(131) $P4_2/mmc$, $a = 3.8218$, $c = 7.4$ x y $z4(m) 0.173 \frac{1}{2} 04(k) 0.226 \frac{1}{2} \frac{1}{2}2(e) 0 0 \frac{1}{4}$	(131) $P4_2/mmc$, $a = 3.8218$, $c = 7.9237$ Å. $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 12. Corrected structure data for α -Li₃BN₂ (original data from JSSCB 71 1)

(136)	$P4_2/mnm$,	a = 4.64	435, c = 5.2	2592 Å.	
	x	у	z	PP	Old
4(<i>f</i>)	0.2038	x	0		
4(d)	0	ļ	1		2
2(b)	0	ō	ļ		ī
2(a)	0	0	0		

Table 13. Corrected structure data for Li_{6.45}Mn₃As₄ (original data from ZAACA 356 253)

(a) Partially ordered arrangement of Mn in tetrahedral voids

(49) Pccm, a = 6.129, b = 6.200, c = 5.928 Å, $X = \text{Li}_{0.5}\text{Mn}_{0.5}$.

		x	y	z	PP	Old
Li(1)	4(q)	0.25	0.25	0	0.3625	u
As	4(q)	0.25	0.75	0		
Li(2)	2(h)	12	ł	1		g,h
Li(3)	2(g)	0	ł	4		d,f
Mn	2()	ļ	Ō	ł		c.e
X	2(e)	0	0	1		a,b

(b) Disordered arrangement of Mn in tetrahedral voids

(67) Cmma, $a = 5.928$, $b = 6.129$, $c = 6.200$ Å, $X = \text{Li}_{0.25}\text{Mn}_{0.75}$.									
		x	у	Z	PP	Old			
Li(1)	4(g)	0	ł	0.25	0.3625				
As	4(g)	0	1	0.75					
Li(2)	4(b)	1	0	ļ		d.f.g.h			
X	4(a)	4	0	ō		a,b,c,e			

Table 14. Corrected structure data for Li₇Pb₂ (original data from JPCHA 60 234)

(164) $P\overline{3}m1$, a = 4.751, c = 8.589 Å.

		x	у	z	PP	Old
Li(1)	2(d)	ł	3	0.08333		1 <i>a</i> *
Li(2)	2(d)	ł	3	0.41667		16
Pb	2(d)	1	3	0.75000		
Li(3)	2(c)	0	0	0.33333		2
Li(4)	l(a)	0	0	0		3

* z coordinate is misprinted as $-\frac{1}{2}$ instead of $-\frac{1}{12}$ in paper.

data from JCOMA 63 P83)

(10)	<i>P2/m</i> , <i>a</i> = (in SR	4·686, <i>b</i> = 45A 93 sit	= 2·729, a te occupa	c = 4 tion i	695 Å, s interp	$\beta = 109$ reted as	60°, Li₀₂₄	$X = \mathrm{Li}_{0.1}$	₂ Pd _{0.88}
			x	v	z	P	PP	Old	

				-	 -
Li	1(g)	ź	0	1	1,2
Pd(1)	1()	0	12	2	3
X	1(e)	2	12	0	
Pd(2)	1(<i>a</i>)	0	0	0	1,2

Table 16. Corrected structure data for LiRh (original data from ACCRA 18 906)

(187) $P\overline{6}m2$, $a = 2.649$, $c = 4.359$ Å.							
Li Rh	l(d) l(a)	x ¦ 0	у 3 0	z 1 0	PP	Old	

Table 17. Corrected structure data for $MgAu_{3-x}$ (x = 0) (original data from ZEMTA 56 864)

	(63) Cmcm, $a = 5.740$, $b = 19.83$, $c = 23.59$ Å.									
		x	y	Z	PP	Old				
Au(1)	16(<i>h</i>)	0.25	0.045	0.02		4,6				
Au(2)	16(h)	0.25	0.202	0.15		1,7				
Au(3)	16(h)	0.25	0.292	0.02		3,5				
Au(4)	16(h)	0.25	0.455	0.12		2,8				
Au(5)	8(g)	0.25	0.125	1		9,11				
Au(6)	8(g)	0.25	0.375	4		10,12				
Au(7)	8()	0	0.085	0.12		14,20				
Au(8)	8()	0	0.082	0.55		16,17				
Mg(1)	8(1)	0	0.165	0.02		4,5				
Mg(2)	8(1)	0	0.165	0.65		1,8				
Au(9)	8()	0	0.335	0.12		13,19				
Au(10)	8()	0	0.335	0.55		15,18				
Mg(3)	8()	0	0.415	0.02		3,6				
Mg(4)	8(/)	0	0.585	0-15		2,7				
Mg(5)	4(c)	0	0.000	4		9,12				
Mg(6)	4(c)	0	0.220	Å		10,11				
Au(11)	4(c)	0	0.200	4		22,23				
Au(12)	4(c)	0	0.750	4		21,24				

Table 18. Corrected structure data for Mg₃In (original data from ZEMTA 54 422)

	(16	6) <i>R</i> 3 <i>m</i> ,	a = 6.323	c = 31.060	Å.	
		x	y	z	PP	Old
Mg(1)	18(h)	0.5	- x	0.125		1,4
Mg(2)	18(h)	0.5	- x	0.2917		2,3
In(1)	6(c)	0	0	0.125		1,2
In(2)	6(c)	0	0	0.2917		3,4

Table 19. Corrected structure data for Mn_2AlB_2 (original data from ZAACA 344 140)

	(65) Ci	mmm, a =	= 2.92, b = 1	1·08, c	= 2∙89 Å.	
		x	у	Z	PP	Old
Mn	4(<i>i</i>)	0	0.355	12		
В	4(i)	0	0.209	0		
Al	2(a)	0	0	0		

Table 20. Corrected structure data for Mn₃As (original data from MOCMB 82 513)

(63) Cmcm, a = 3.788, b = 16.29, c = 3.788 Å.

		x	У	z	PP	Old
As	4(c)	0	0.159	ł		1,2
Mn(1)	4(c)	0	0.3155	4		3,6
Mn(2)	4(c)	0	0.5565	ł		2,5
Mn(3)	4(c)	0	0.9435	4		1,4

Table 15. Corrected structure data for LiPd₂ (original Table 21. Corrected structure data for MnBi quenched (original data from ACSAA 26 175)

	(51) <i>Pmma</i> , $a = 5.959$, $b = 4.334$, $c = 7.505$ Å.							
		x	v	Z	PP	Old		
Bi(1)	2(1)	1	ł	0.165		1*		
Mn(1)	2(e)	4	0	0.398	0.33	(1)		
Bi(2)	2(e)	1	0	0.699	0.88	2		
Mn(2)	2(d)	0	ł	12		1*		
Mn(3)	2(a)	0	0	0	0.90	2		

* Sites with 0.96 < PP < 1.02 are assumed to be fully occupied.

Table 22. Corrected structure data for Mn(Bi_{0.85}Sb_{0.15}) (original data from PSSAB 34 553)

(51)	Pmma, a	= 5·70, <i>k</i>	$p = 4 \cdot 27, c$	= 7·40 Å, <i>x</i>	$C = Bi_{0.85}S$	b _{0 15} .
		x	у	Z	PP	Old
X(1)	2(1)	1	1	0.136		1*
Mn(1)	2(e)	1	0	0.282	0.63	(I)2
X(2)	2(e)		0	0.709		2*
Mn(2)	2(d)	0	ź	12		1*
Mn(3)	2(<i>a</i>)	0	0	0	0.39	2

* Sites with 0.96 < PP < 1.04 are assumed to be fully occupied.

Table 23. Corrected structure data for Na₂HgO₂ (original data from ZAACA 329 110)

	(13	9) <i>1</i> 4/mm	m, a = 3.4	2, $c = 13.32$	2 A.	
		x	у	Z	PP	Old
0	4(<i>e</i>)	0	0	0.147		
Na	4(e)	0	0	0.325		
Hg	2(<i>a</i>)	0	0	0		

Table 24. Structure data for α -NaSbS₂ refined in space group C2/c (ZAACA 446 159) with, in parentheses, deviations from these values observed for data refined in $P\overline{1}$ (JSTCA 20 122) and transformed according to Table 1

(15) C2/c, d	a = 8.232	2(3), b = 8.2 124.28(52 (7), $c = (2)$, $\gamma = 90 \cdot (2)$	6·836 (3) Å,)0 (3)°.	$\alpha = 90.0$	$00(1), \beta =$
		x	у	z	PP	Old
S	8(f)	0.2203 (3)	0.4118 (5)	0.2404 (2)		
Na	4(e)	0.0000 (11)	0.1336 (9)	0.2500 (5)		
Sb	4(e)	0.0000 (0)	0.6027 (1)	0.2500 (0)		

Table 25. Corrected structure data for $Na_{1-x}TiS_2(x)$ = 0.45) (original data from BSCFA 1971 3930)

(160)	R3m,	a =	3.433,	<i>c</i> =	20•94 Å.
-------	------	-----	--------	------------	----------

		x	у	z	PP	Old
Ti	3(a)	0	0	0.00		
Na	3(a)	0	0	0.17	0.55	
S(1)	3(a)	0	0	0.39		2
S(2)	3(a)	0	0	0.60		I

Table 26. Corrected structure data for NbD_{0.95} (original data from SPSSA 10 1076)

(66) Ca	rcm, a = 1	3·447, <i>b</i> =	4.860, c =	4·860 A.	
	x	у	z	PP	Old
4(e)	1	Ĩ	0	0.05	
4(a)	0	0	4	0.95	1,2

Nb D

Old

1,2

Table 27. Corrected structure data for θ -Ni₂Si (original data from ACCRA 5 329)

rigi-	Table 33. Corrected structure data for VAu ₂ (original
	data from ZEMTA 53 433)

	(194) P6 ₃ /mn	nc, $a = 3.8$	305, c = 4.8	890 Å.			(63) (Cmcm, a =
		x	у	z	PP	Old			x
Si	2(d)	ł	Ĩ	2			Au	8(g)	0.33
Ni(1)	2(c)	ł	23	1		2	v	4(c)	0
Ni(2)	2(a)	0	0	0		1			

Table 28. Corrected structure data for $Pd_{4-x}Te$ (x = 0.5) (original data from SPHCA 14 779)

	(227) Fa	d3m, a =	= 12·69 Å.		
	x	у	z	PP	Old
48(/)	0.375	1	ŝ		3,4
32(e)	0.250	x	x		1,2
16(d)	ł	2	ł		1
16(c)	Ō	Ō	Ō	ł	5
8(a)	1 8	8	! \$		2,3
	48(f) 32(e) 16(d) 16(c) 8(a)	$(227) F_{0}$ x $48(f) $	$(227) Fd\overline{3}m, a = \frac{x y}{48(f) 0.375 \frac{1}{6}}$ 32(e) 0.250 x 16(d) \frac{1}{2} \frac{1}{2} 16(c) 0 0 0 8(a) \frac{1}{6} \frac{1}{6}	$(227) \ Fd\overline{3}m, a = 12.69 \ \text{\AA}.$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(227) \ Fd\overline{3}m, a = 12.69 \ \text{Å}.$ $x \ y \ z \ PP$ $48(f) \ 0.375 \ \text{$\frac{1}{6}$} \ \text{$\frac{1}{6}$}$ $32(e) \ 0.250 \ x \ x$ $16(a) \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}$ $16(c) \ 0 \ 0 \ 0 \ \frac{1}{4} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6}$

Table 29. Corrected structure data for PtSn4 (originaldata from ZEMTA 41 298)

(68)
$$Ccca, a = 6.419, b = 11.357, c = 6.388 \text{ Å}.$$

x y z PP

Table 30. Corrected structure data for SrFe₂S₄ (original data from MOCMB 109 975)

	(1	25) P4/nb	m, a = 7.9	917, $c = 5$	505 Å.	
		x	у	z	PP	Old
S	8(<i>m</i>)	0.409	- x	0.25		
Fe(1)	2(d)	ł	1	12		2
Fe(2)	2(c)	3		0		I
Sr(1)	2(b)	ł	1	ł	0.22	2
Sr(2)	2(a)	Å	4	0	0.75	1

Table 31. Corrected structure data for Tb₂(Fe_{0.832}-Al_{0.168})₁₇ (original data from JCOMA 45 103)

(19	91) P6/m	nm, a = 8·	532, $c = -$	4·175 Å, <i>X</i>	$= Fe_{0.8324}$	Al ₀₋₁₆₇₆ .
		x	у	z	PP	Old
X(1)	6(m)	0.167	2x	ł		1
X(2)	6(/)	0.333	0	0		2
X(3)	4(h)	1	2	0.28	0.20	4
X(4)	3(g)	12	Ó	ł		3
Tb(1)	2(c)	1	ł	0	0.20	1
Tb(2)	1(a)	0	Ó	0		2

Table 32. Corrected structure data for Ti₃Al₂N₂ (original data from JSSCB 53 260)

(186) $P6_3mc$, $a = 2.9875$, $c = 23.350$ Å.								
		x	у	z	PP	Old		
N(1)	2(b)	}	3	0.02	0.9	2		
Γi(1)	2(b)	4	2	0.10	0.1	5		
Γi(2)	2(b)	ł	23	0.20	0.9	2		
N(2)	2(b)	ł	3	0.25	0.1	3		
Al(1)	2(b)	ł	ł	0.40		2		
N(3)	2(b)	j.	ŝ	0.55	0.1	4		
Γi(3)	2(b)	ł	ł	0.60	0.9	3		
Γi(4)	2(b)	1	ł	0.70	0.1	4		
N(4)	2(b)	į	2 3	0.75	0.9	1		
Γi(5)	2(a)	Ö	Ó	0.00		i		
Al(2)	2(a)	0	0	0.30		1		

(63)	Cmcm, a =	8·482, b =	= 4.810, a	: = 4·684 Å	
	x	у	Z	PP	Old
8(g)	0.33	0.22	4		1,2
4(c)	0	0.22	ļ		1,2

 Table 34. Corrected structure data for V₆C₅ (original data from PHMAA 18 177)

(151) $P3_112$, a = 5.09, c = 14.40 Å.

		x	у	z	PP	Old
V(1)	6(c)	0.111	0.222	0.417		3,4
V(2)	6(c)	0.111	0.556	0.220		1,6
V(3)	6(c)	0.444	0.222	0.220		2,5
C(1)	3(b)	0.444	- x	ş		5
C(2)	3(b)	0.778	- x	ş		4
C(3)	3(a)	0.111	- x	ł		2
C(4)	3(a)	0.444	- x	Ì		1
C(5)	3(a)	0.778	- x	}		3

Table 35. Corrected structure data for VCo₃ LT (original data from ACCRA 12 500)

(194) $P6_3/mmc$, a = 5.032, c = 12.27 Å.

		x	у	z	PP	Old
Co(1)	12(k)	0.1667	2.x	0.0833		2,3
Co(2)	6(h)	0.2000	2 <i>x</i>	1		1,4
V(1)	4(1)	3	ŝ	0.5833		2,3
V(2)	2(b)	0	0	4		1,4

Table 36. Corrected structure data for γ -V₄D₃ (original data from PSSAB 15 267)

	(49)	Pccm, a = -	4·445, b =	6·286, c	= 4·445 Å.	
		x	у	Z	PP	Old
V(1)	4(q)	0.250	0.125	0		2
V(2)	4(q)	0.250	0.625	0		1
D(1)	4(1)	ł	0.220	1	0.96	1
D(2)	2(e)	Ō	0	1	0.96	2

 Table 37. Corrected structure data for WA15 (original data from ACCRA 8 349)

	(1	82) P6322,	a = 4.96	020, c = 8	8570 Å.	
		x	у	z	PP	Old
Al(1)	6(g)	0.333	0	0		3
W	2(d)	1	2	3		
Al(2)	2(c)	ł	3	1		1
Al(3)	2(b)	0	0	ļ		2

Table 38. Corrected structure data for δ-Yb₂S₃ (original data from RJICA 21 1565)

(11) $P2_1/m$, $a = 10.37$, $b = 4.06$, $c = 18.15$ Å, $\beta = 100^{\circ}$.							
		x	у	z	PP	Old	
S(1)	2(e)	0.0029	4	0.0459		4	
S(2)	2(e)	0.0537	1	0.7490		1	
Yb(1)	2(e)	0.1202	4	0.9277		2	
Yb(2)	2(e)	0.1865	1	0.2197		4	
Yb(3)	2(e)	0.1865	4	0.5195		1	
S(3)	2(e)	0.2881	1	0.6943		3	
S(4)	2(e)	0.3047	4	0.3906		5	
S(5)	2(e)	0-3604	4	0.0225		7	
Yb(4)	2(e)	0.4824	4	0.8926		5	
Yb(5)	2(e)	0.5400	4	0.6104		6	
S(6)	2(e)	0.6582	4	0-4893		8	
S(7)	2(e)	0.6787	4	0.8076		6	
S(8)	2(e)	0.7275	ł	0.1250		2	
Yb(6)	2(e)	0.8301	1	0.2842		3	
S(9)	2(e)	0.9512	4	0.4365		9	

Table 39. Corrected structure data for Zr₄Al₃ (original data from ACCRA 13 56)

(191) P6/mmm, $a = 5.433$, $c = 5.390$ Å.						
		x	у	Z	PP	Old
Al	3()	12	0	0		
Zr(1)	2(e)	0	0	4		1
Zr(2)	2(<i>d</i>)	3	3	12		2,3

Structures reported in the correct space group and which may be considered as isotypic, anti-types (PuGa₃ HT, ZrAl₃), representatives of structure-type branches (MnHg LT, WC), or site-ordering variants (CoMnSb, PuBr₃) of the structure types discussed here, are indicated in the last column of Table 1. The coordinates of NaSbS₂ refined in space group $P\overline{1}$ become, after transformation, very similar to those of NaSbS₂ previously reported with a KSbS₂-type structure. The deviations from the data refined in C2/c (see Table 24) are only slightly outside the e.s.d. ranges indicated for this structure, and the fact that this work was not known to the authors of the refinement in $P\overline{1}$ makes the existence of a triclinic deformation variant under these conditions unlikely. Among the compounds crystallizing with an Na₂HgO₂type structure, some were reported in the incorrect space group 1422, some refined in space group 14/mmm but were identified as isotypic (e.g. Na₂PdH₂), and some were published in space group I4/mmm without being recognized as isotypic (e.g. U₂IrC₂).

This study was supported by the Swiss National Science Foundation under contract 20-28490.90.

References

- CENZUAL, K., GELATO, L. M., PENZO, M. & PARTHÉ, E. (1990). Z. Kristallogr. 193, 217-242.
- CHABOT, B., BRAUN, H. F., YVON, K. & PARTHÉ, E. (1981). Acta Cryst. B37, 668-671.
- Chemical Abstracts Service Source Index (1989). Columbus, Ohio: American Chemical Society.

GELATO, L. M. & PARTHÉ, E. (1987). J. Appl. Cryst. 20, 139-143.

- LE PAGE, Y. (1988). J. Appl. Cryst. 21, 983-984.
- PARTHÉ, E. & CHABOT, B. (1988). Acta Cryst. C44, 774-775.
- PARTHÉ, E. & GELATO, L. M. (1984). Acta Cryst. A40, 169 183.
- PARTHÉ, E. & GELATO, L. M. (1985). Acta Cryst. A41, 142-151.
- PARTHÉ, E., GELATO, L. M., CHABOT, B., PENZO, M. & CENZUAL, K. (1991). Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. In preparation.
- Structure Reports (1940–1988). Vols. 8–55A ff. Dordrecht: Kluwer Academic Publishers.
- Strukturbericht (1913-1939). Vols. 1-7. Leipzig: Akademische Verlagsgesellschaft.
- ZHAO, J. T., GELATO, L. M. & PARTHÉ, E. (1991). Acta Cryst. C47, 479-483.
- ZHAO, J. T. & PARTHÉ, E. (1990). Acta Cryst. C46, 2276-2279.

Acta Cryst. (1991). B47, 439-446

The Importance of Accurate Crystal Structure Determination of Uranium Minerals. I. Phosphuranylite KCa(H₃O)₃(UO₂)₇(PO₄)₄O₄.8H₂O

By Francesco Demartin

Istituto di Chimica Strutturistica Inorganica, Università degli Studi, Via Venezian 21, I-20133 Milano, Italy

Valeria Diella

Centro di Studio per la Stratigrafia e Petrografia delle Alpi Centrali, Via Botticelli 23, I-20133 Milano, Italy

STEFANO DONZELLI AND CARLO M. GRAMACCIOLI

Dipartimento di Scienze della Terra, Università degli Studi, Via Botticelli 23, I-20133 Milano, Italy

and Tullio Pilati

Centro per lo Studio delle Relazioni fra Struttura e Reattività Chimica, Via Golgi 19, I-20133 Milano, Italy

(Received 28 September 1990; accepted 16 January 1991)

Abstract

On the basis of accurate crystal structure determination, the mineral phosphuranylite corresponds to the chemical formula $KCa(H_3O)_3(UO_2)_7(PO_4)_4O_4.8H_2O$.

0108-7681/91/040439-08\$03.00

Cmcm, a = 15.778 (3)–15.899 (2), b = 13.702 (2)– 13.790 (5), c = 17.253 (3)–17.330 (3) Å, Z = 4, $D_x = 4.575-4.631$ g cm⁻³, $\mu = 287.6-291.1$ cm⁻¹. The presence of potassium (about 1.80 wt% K₂O), overlooked until now, has been confirmed by microprobe

© 1991 International Union of Crystallography